快生活 - 生活常识大全

圆锥的体积教学设计


  教学目标:
  1、指导学生通过实验推导出圆锥体积计算公式,并能运用公式计算圆锥的体积,解决有关的实际问题。
  2、使学生经历猜测、验证的数学发现过程。
  3、培养学生良好的合作探究意识。
  4、向学生渗透知识间可以相互转化的辩证唯物主义思想,学习将新知识转化为原有知识的方法。
  教学重点:圆锥体积计算公式的推导过程。
  教学难点:通过转化的思想理解圆锥体积计算公式的推导过
  程,掌握"圆锥的体积是和它等底等高圆柱体积的三分之一.
  教学准备:课件、圆柱和圆锥、米或沙子。
  教学过程:
  一、复习铺垫、巧妙引入。
  1、怎样计算圆柱的体积?(板书:圆柱的体积=底面积×高)
  2同学们,前面我们学习了圆锥的认识,现在来复习一下。
  ⑴圆锥体的特征是什么?
  ⑵据图找高。
  3出示沙堆图(近似圆锥),工地上有一堆沙子,你能帮助李叔叔算出这堆沙子的体积吗?
  师:圆锥的体积怎样计算我们还没有学,怎么办呢?通过这节课的学习相信同学们一定会帮助李叔叔解决这个问题。(板书课题)
  二、引导探索,操作实验
  1、师:同学们回忆一下,我们怎样计算圆柱的体积?用字母怎样表示?(板书:圆柱的体积=底面积×高,V=Sh)是怎样推倒出圆柱的体积公式的呢?(转化)大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?(学生猜想求圆锥体积的方法。)
  生1:可以将圆锥转化成长方体或正方体
  师:此种方法是否可行?(圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。)
  生2: 将圆锥转化成圆柱,就更容易进行研究。
  生3:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。
  2、 师:既然大家都认为圆锥与圆柱的联系最为密切,那么请同学们猜一猜圆柱和圆锥之间有怎样的关系呢?(学生猜测)
  3、师:实践出真知,圆锥的体积到底和圆柱的体积有怎样的关系,同学们通过亲自动手实验,验证一下就会有所发现。
  实验探究(课件演示)
  A实验要求:(1)实验材料,任选沙、米、水中的一种。
  (2)实验方法:(小组合作)用圆锥向圆柱里倒,倒满为止,几次倒满;或用圆柱向圆锥里倒,倒空为止,几次倒空。
  (3)通过做实验,你发现圆柱和圆锥有什么关系?
  B汇报交流
  师:谁来汇报一下,你们组是怎样做实验的?有什么发现?
  生1:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。
  生2:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)
  师:同学们得出这个结论非常重要,其他组也是这样的吗?生略
  C师:教师拿不等底等高的圆柱和圆锥再次做实验,问:为什么圆锥体积不是圆柱体积的1/3总结强调:等底等高
  D通过上面的实验,你发现了什么?
  圆锥的体积等于和它等底等高的圆柱体积的1/3。
  圆柱的体积等于和它等底等高的圆锥体积的3倍。
  4师:现在你能写出圆锥的体积公式吗?
  生答:圆锥的体积=底面积×高×1/3。
  师:如果圆锥的体积用V表示,底面积用S表示,高用h表示。
  师:板书 V圆锥=1/3V圆柱=1/3Sh
  5、师:要求圆锥的体积,必须知道什么?
  生:圆锥的底面积和高.
  师:还必须要怎么样?(×1/3)
  小结:不要漏乘1/3,计算时,能约分时要先约分。
  6、想一想,议一议,说一说
  ⑴、已知圆锥的底面半径r和高h,如何求体积V?
  ⑵、已知圆锥的底面直径d和高h,如何求体积V?
  ⑶、已知圆锥的底面周长C和高h,如何求体积V?
  三、运用公式,解决问题。
  1、师:推导出圆锥体积的计算公式,现在你能帮助李叔叔求出这堆沙子的体积了吗?(再次出示沙堆图)要求出沙堆的体积必须知道哪些条件?(底面半径,直径或周长,高)教师补足条件:沙堆底面直径4米,高1.5米。学生独立计算,交流。教师再补充条件:如果每立方米沙子重1.5吨,这堆沙子大约重多少吨?(一生板演,其他生本上完成。)
  四、巩固练习,拓展深化。(智慧屋)
  1、现在我们来轻松练习,请看屏幕。《做一做》
  2、判断(智慧法官)
  ⑴圆柱体的体积一定比圆锥体的体积大()
  ⑵圆锥的体积等于和它等底等高的圆柱体积的1/3()
  ⑶正方体、长方体、圆锥体的体积都等于底面积×高( )
  ⑷圆柱的体积相当于圆锥体积的3倍。( )
  (5)一个圆柱木料,把它加工成最大的圆锥,削去的部分的体积和圆锥的体积比是2:1。( )
  (6)圆锥的高是圆柱的高的3倍,它们的体积一定相等。( )
  3、计算(聪明使者)
  (1)一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
  (2)一个圆锥底面周长是31.4厘米,高是9厘米。它的体积是多少立方厘米?
  4作业 36页9、10题。
  5思考题
  有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方厘米?
  五、小结
网站目录投稿:采波