教育房产时事环球科技商业
投稿投诉
商业财经
热点动态
科技数码
软件应用
国际环球
晨报科学
新闻时事
信息智能
汽车房产
办公手机
教育体育
生活生物

三角形的内角和是多少度(三角形内角和一定是180吗)

  三角形的内角和是多少度(三角形内角和一定是 180°吗)
  如果有人问你:"三角形内角和等于多少?"你肯定会不假思索地告诉他:"180°!"
  假如那个人说不是180°,那么你可能会认为他无知。
  其实,"三角形内角和等于180°"只是欧几里得几何学(Euclid Geometry)中的一个定理。也就是说,在欧几里得几何学里,一个三角形的内角和等于 180°,但如果跳出欧几里得几何学的范围,一个三角形的内角和就不一定等于 180°!
  举个栗子,地球的赤道、0 度经线和 90 度经线相交构成一个"三角形",这个"三角形"的三个角都应该是 90°,它们的和就是270°!
  你感到奇怪吗?你知道除了欧几里得几何(欧氏几何)学外,还有其他几何学吗?这些几何学称为非欧(欧几里得)几何学。
  欧式几何
  想要探索非欧几何,先要了解欧式几何。欧几里得几何指按照古希腊数学家欧几里得的《几何原本》构造的几何学。有时单指平面上的几何,即平面几何。数学老师课堂上教授的就是欧式几何。它有以下几条简单的公理:
  1、任意两个点可以通过一条直线连接。
  2、任意线段能无限延长成一条直线。
  3、给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。
  4、所有直角都全等。
  5、若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角和,则这两条直线在这一边必定相交。
  这五条"显然"的公理是平面几何的基石,我们也是仰仗这些公理干掉了一道道几何题目。但机智的你有没有发现第五公设(平行公设)和前面的四个公设比较起来,文字叙述冗长,而且不那么显而易见,有违数学的简洁美感呢?
  在《几何原本》中,证明前28个命题并没有用到这个公设,这很自然引起人们考虑:这条啰哩八嗦的公设是否可由其他的公理和公设推出,也就是说,平行公设可能是多余的。
  罗氏几何的诞生
  因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达2000多年的关于"平行线理论"的讨论。
  由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走得不对。第五公设到底能不能被证明?
  到了十八世纪,俄国喀山大学教授罗巴切夫斯基( Lobachevsky)在证明第五公设的过程中走了另一条路。罗巴切夫斯基的爸爸"老罗"也一生致力于研究第五公设的证明,但并没有什么成果,老罗曾告诫自己的儿子"小罗":"你不要搞第五公理了,我都研究一辈子了,都没搞出来,这简直是数学家的噩梦。"
  然而小罗并没有听从老爸的建议。他提出了一个和欧氏平行公理相矛盾的命题"过直线外一点,至少可以作两条直线和已知直线不相交",用它来代替第五公设,然后与欧氏几何的前四个公设结合成一个公理系统,展开一系列的推理。他认为如果这个系统为基础的推理中出现矛盾,就等于证明了第五公设。我们知道,这其实就是数学中的反证法。
  罗氏几何符合双曲面模型
  但是,在他极为细致深入的推理过程中,得出了一个又一个在直觉上匪夷所思,但在逻辑上毫无矛盾的命题。最后,罗巴切夫斯基得出两个重要的结论:
  第一,第五公设不能被证明。
  第二,在新的公理系统里展开的一连串推理,得到了一系列在逻辑上没有矛盾的新的定理,并形成了新的理论体系。这个理论体系像欧氏几何学的理论体系一样是完备的、严密的。
  左:欧式几何 右:罗氏几何
  这种几何学被称为罗巴切夫斯基几何学,简称罗氏几何学(Lobachevskian geometry),也是我们最早发现的非欧几何学。
  罗氏几何学的公理系统和欧氏几何学不同的地方,仅仅是把欧氏几何学平行公理"过直线外一点,能并且只能作一条直线平行于已知直线"用"过直线外一点,至少可以作两条直线和这条直线平行"来代替,其他公理基本相同。由于平行公理不同,经过演绎推理却引出了一连串和欧氏几何学内容不同的新命题。
  机智的你可能已经发现,上面这些命题和我们的直觉是矛盾的。但是,数学家们经过思考提出,可以用我们习惯的办法作一个直观"模型"来证实它的正确性。
  拟球曲面
  1868 年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何学可以在欧几里得空间的曲面(例如拟球曲面)上实现。他发现这里三角形的三个内角之和小于180°,这相当于给罗氏几何找到了一种有实际意义的模型。
  那个时代被誉为"数学王子"的高斯也发现了第五公设不能被证明,同时也涉足了非欧几何学的研究。但高斯害怕这种理论会遭到当时教会力量的打击和迫害,不敢公开发表自己的研究成果,只是在书信中向朋友表示了自己的看法,并没有公开支持罗巴切夫斯基的新理论。
  黎曼几何学
  那么既然我们能把第五公里改成"过一点,有多条直线与已知直线平行",是不是也可以改成"过一点,没有直线与已知直线平行"呢?
  于是,有个叫黎曼的聪明人,结合欧式几何的前四条公里加上"过一点,没有直线与已知直线平行"创建了自己的几何——黎曼几何。比如,在一个球面上,过直线外一点所画的直线一定与已知直线相交。所以黎曼几何又称椭球几何。
  ##可能会有人说地球仪上的纬线是平行的呀?!但是注意曲率展开后的纬线是弯的,纬线上任意两点最短连线不是纬线本身,当然赤道除外。球面上的直线只有大圆。##
  在航海学上黎曼几何也得到了广泛应用。地球本身就是曲面的,如果使用欧式几何,只会得到错误的结论。
  Credit:B站 肉兔君
  近代黎曼几何学在广义相对论里得到了重要的应用。物理学家爱因斯坦的广义相对论中的空间几何就是黎曼几何。在广义相对论里,爱因斯坦放弃了关于时空均匀性的观念,他认为时空是弯曲的,这恰恰是和黎曼几何学的背景相似。正因为如此爱因斯坦在看到了罗巴切夫斯基和黎曼的发现之后,才会欣喜若狂,他终于找到了一种可以解释相对论的数学工具了。

世界上最大的淡水鱼(世界上最大的淡水鱼,生活在中国黑龙江)世界上最大的淡水鱼(世界上最大的淡水鱼,生活在中国黑龙江)大家好!欢迎走进新一期的杰出世界,我是小云。鱼可是很多人都喜欢吃的食物。它不仅味道好,而且营养也很丰富。不过除了沿海的居民世界上最长的海沟(世界十大最深海沟)世界上最长的海沟(世界十大最深海沟)大海是很多人向往的地方,美丽而又神秘,但大海深处有很多由于板块运动形成的海沟,却深的令人惊恐,今天我就给大家介绍一下世界上最深的十大海沟10。阿世界上最深的海沟是太平洋吗(世界十大最深海沟)世界上最深的海沟是太平洋吗(世界十大最深海沟)大海是很多人向往的地方,美丽而又神秘,但大海深处有很多由于板块运动形成的海沟,却深的令人惊恐,今天我就给大家介绍一下世界上最深的十大海世界上最深的湖在哪个国家(世界最深的湖泊贝加尔湖)世界上最深的湖在哪个国家(世界最深的湖泊贝加尔湖)世界上最深的湖泊是贝加尔湖,这个十分狭长的湖泊的平均深度730米,最深处为1637米,它的面积为3。15万平方公里,在世界上最大的世界上最深的湖在哪个国家(世界最深的十大湖)世界上最深的湖在哪个国家(世界最深的十大湖)贝加尔湖最深处1637米贝加尔湖(LakeBaikal)位于俄罗斯东西伯利亚的南部,是由构造运动形成的断裂凹陷湖,为世界上最为古老的湖泊世界上最深的湖在哪个国家(世界最深的湖泊贝加尔湖)世界上最深的湖在哪个国家(世界最深的湖泊贝加尔湖)世界上最深的湖泊是贝加尔湖,这个十分狭长的湖泊的平均深度730米,最深处为1637米,它的面积为3。15万平方公里,在世界上最大的马猴烧酒(马猴烧酒的内涵意思)马猴烧酒(马猴烧酒的内涵意思)马猴烧酒其实就是魔法少女的日语谐音直译过来的()说起源啊,似乎也不能追溯到是具体哪部魔法少女题材的动漫了,应该说是自魔法少女题材动漫出生,就自然有了马李敏德扮演者(锦绣未央里痴情守护唐嫣,让人感动)李敏德扮演者(锦绣未央里痴情守护唐嫣,让人感动)梁振伦,听名字很陌生,可是一提到现在他在锦绣未央里演的李敏德,不少观众会恍然大悟。原来是他?在锦绣未央里,梁振伦演的李敏德,与唐嫣演陈氏家谱(福建长乐古灵陈氏族谱)陈氏家谱(福建长乐古灵陈氏族谱)序言知今宜鉴古,无古不成今在这太平盛世,文明日起,新世纪的千年曙光即将来临之即。陈氏古城(古灵),族谱在理事会全体成员共同努力之下,第三次纂修第一期嵩山在哪(嵩山)嵩山在哪(嵩山)公元696年1月,中国唯一的女皇武则天从神都洛阳出发,登临中岳嵩山。举办登基以来,最重要的一次祭祀大典封禅。中岳嵩山,被她改名神岳。众所周知,古代皇帝封禅首选泰山。嵩山在哪(嵩山)嵩山在哪(嵩山)公元696年1月,中国唯一的女皇武则天从神都洛阳出发,登临中岳嵩山。举办登基以来,最重要的一次祭祀大典封禅。中岳嵩山,被她改名神岳。众所周知,古代皇帝封禅首选泰山。
郑州火车东站(实探郑州东站核酸证明电子版纸质版均可)郑州火车东站(实探郑州东站核酸证明电子版纸质版均可)猛犸新闻东方今报记者王琳文图如果乘坐火车,来不及去医院拿纸质版核酸检测证明,电子版的是否可以?核酸证明48小时以内是如何界定的?房屋常识盛世18号有房产证吗谁能说说呢很多朋友们现在对于房产方面的知识了解的偏少,不管是从购房的角度,或者是装修房子的角度,我们都需要对房产方面的一些知识进行了解,所以小编今天就在网上搜集了一些房产方面相关的知识来分享考研究生需要什么条件(先看看你符合报考条件吗)考研究生需要什么条件(先看看你符合报考条件吗)21考研有不少小伙伴问小编关于考研报考条件的问题。在决定考研前,首先要做的不是选择目标院校及专业,而是看自己是否符合报考条件,比如有些房屋常识购买小产权房的风险有哪些很多朋友们现在对于房产方面的知识了解的偏少,不管是从购房的角度,或者是装修房子的角度,我们都需要对房产方面的一些知识进行了解,所以小编今天就在网上搜集了一些房产方面相关的知识来分享房屋常识什么是抵债房,购买后有产权吗很多朋友们现在对于房产方面的知识了解的偏少,不管是从购房的角度,或者是装修房子的角度,我们都需要对房产方面的一些知识进行了解,所以小编今天就在网上搜集了一些房产方面相关的知识来分享房屋常识橙仕空间产权多少年住建委解读共有产权住房政策永不可转商品房很多朋友们现在对于房产方面的知识了解的偏少,不管是从购房的角度,或者是装修房子的角度,我们都需要对房产方面的一些知识进行了解,所以小编今天就在网上搜集了一些房产方面相关的知识来分享房屋常识共有产权房怎么算房价很多朋友们现在对于房产方面的知识了解的偏少,不管是从购房的角度,或者是装修房子的角度,我们都需要对房产方面的一些知识进行了解,所以小编今天就在网上搜集了一些房产方面相关的知识来分享房屋常识自住房共有产权什么意思很多朋友们现在对于房产方面的知识了解的偏少,不管是从购房的角度,或者是装修房子的角度,我们都需要对房产方面的一些知识进行了解,所以小编今天就在网上搜集了一些房产方面相关的知识来分享房屋常识自住房就是共有产权房吗谁可以来说说很多朋友们现在对于房产方面的知识了解的偏少,不管是从购房的角度,或者是装修房子的角度,我们都需要对房产方面的一些知识进行了解,所以小编今天就在网上搜集了一些房产方面相关的知识来分享appleid密码忘了(iPhone忘记ID密码怎么办?)appleid密码忘了(iPhone忘记ID密码怎么办?)前段时间有个小伙伴问小编我把iPhone的ID密码忘记了咋办?相信很多果粉都知道苹果的ID是十分重要的,它是你们使用各种苹appleid密码忘了(忘记AppleID密码怎么办)appleid密码忘了(忘记AppleID密码怎么办)苹果用户最常见的一个问题是忘记了AppleID密码,这样就没办法从AppStore下载应用了。密码忘记是不可避免的,那么如何才