NASA好奇号团队试图解开火星甲烷之谜
据外媒CNET报道,在火星上,甲烷是神秘的东西。科学家们一直对来自火星的甲烷读数感到困惑, 而美国宇航局(NASA)可能离弄清这颗红色星球上的甲烷之谜又近了一步。事实证明,一天中的时间对甲烷的探测有很大的影响。
甲烷特别引人注意,因为它可能是生物的副产品,包括微生物。研究人员正试图找出火星是否曾经有微生物生命,或者微生物是否可能在那里生存。但是甲烷也可以有地质学上的来源。
红色星球上甲烷的奇怪之处在于,NASA的“好奇号”探测器在盖尔陨石坑的地表附近检测到了这种气体,但欧洲航天局的ExoMars Trace Gas Orbiter航天器却没有在大气层的高处发现甲烷。那么发生了什么?
“好奇号”的可调谐激光光谱仪(TLS)是其火星样品分析系统的一部分,基本上是一个便携式化学实验室。通常情况下,TLS检测到的少量甲烷被NASA描述为“相当于在一个奥林匹克大小的游泳池中稀释了大约一撮盐”。在2019年,TLS明显地检测到甲烷水平的一个相当大的峰值。
2016年抵达火星的ExoMars轨道器一直没有发现“好奇号”所检测到的东西。“但是当欧洲团队宣布没有发现甲烷时,我绝对感到震惊,”TLS仪器负责人Chris Webster周二在NASA的声明中说。
这种差异可能归结于轨道器和漫游车每天工作的时间。漫游者上的耗电的TLS在夜间工作,所以它不会与其他仪器发生冲突。轨道器在白天进行探测,因为它有阳光的帮助。可能发生的情况是,甲烷在平静的夜晚聚集在地表附近,并在白天消散,使航天器看不到它。
“好奇号”团队通过在白天测量甲烷来测试这个想法,的确,气体在白天消失了。研究人员周四在 《天文学和天体物理学》 杂志上发表了他们的发现。
虽然一个甲烷之谜可能有了解释,但另一个气体难题仍然存在。NASA仍在试图理清“火星上的全球甲烷难题”。从火星陨石坑中释放的甲烷应该保持足够的稳定性--并在大气中积累足够多--以便被痕量气体轨道器探测到。
科学家们现在正在研究可能破坏甲烷的因素。Webster说:“我们需要确定是否有一个比正常情况下更快的破坏机制,以完全协调来自火星车和轨道器的数据集。在那之前,火星甲烷仍将是一个谜。”
【来源:cnBeta.COM】
研究激光可将3D打印的精确性带入食物烹饪中据外媒NewAtlas报道,尽管现在有可能将食品3D打印成毫米级的精确形状和形式,但烹饪这些打印的食品仍然是一个相当不精确的过程。科学家们正试图改变这种状况,通过使用激光将食物烹饪
河口海藻养殖场可显著降低氮浓度并防止环境污染在7月出版的自然通讯生物学期刊上,特拉维夫大学和加州大学伯克利分校的研究团队提出了一个新模型,即在河口建立的海藻养殖场能够显著降低氮浓度,并防止河口与海洋环境受到污染。作为研究的一
技术改造的夜光植物可作为公共空间的被动照明能源使用的相当大一部分用于照明,因此麻省理工学院的科学家正在开发一种新的被动照明夜光植物。在最新的实验中,该团队已经使它们发出比第一代植物更亮的光,而不损害它们的健康。新兴的植物纳
自1950年以来,地球上一半的珊瑚礁已经消失了珊瑚礁为海洋生物提供了不可替代的生态系统,保护着海岸线,并维持着全球各地沿海社区人们的生计所以你可以理解为什么科学家们对全世界的珊瑚礁侵蚀现象感到担忧。一项新的研究表明,珊瑚礁破坏
哈勃捕捉到银河系中心附近稠密的闪光星域图中这片闪亮的星域是由NASAESA哈勃太空望远镜的宽视场相机3和高级观测相机拍摄的,包含了球状星团ESO52021(也被称为Palomar6)。这是一个密集的大致呈球形的恒星集合
外媒智能服装使用碳纳米管纤维来保持对心脏的监测据外媒报道,莱斯大学研究人员近日展示了一种带有碳纳米管线的服装,该服装可对穿着者的心脏进行持续监测。如果你舒适的服装能做得更好,就没有必要戴上不舒服的智能手表或胸带来监测你的心脏。
科学家利用阳光和盐水打造无需电力的冷却系统据外媒报道,世界上有许多地方缺乏基础设施,但却光照强烈这使得建筑物热得令人不舒服。一个新的系统可能会有所帮助,因为它利用阳光和盐水的组合但不需要电力来产生冷却效果。目前阿卜杜拉国王
麻省理工学院开发出一种控制铁磁体的新方法麻省理工学院的研究人员已经开发出一种控制铁磁性材料制成的磁铁的新方法。与铁磁材料不同,在铁磁材料中,一些原子在一个方向上排列,而其他原子则以相反的方式排列。因此,铁磁性材料产生什么
植物不是逐渐进化的它们在爆发中进化出了复杂性斯坦福大学领导的一项研究显示,陆地植物不是在数亿年中逐渐进化,而是在相隔2。5亿年的两次戏剧性的爆发中经历了重大的多样化。第一次发生在植物历史的早期,引起了种子的发展,第二次发生在
研究人员将噬菌体与抗生素结合起来以对抗严重疾病研究人员利用噬菌体发现了一种新的潜在治疗抗生素抗性细菌的方法。科学家们目前正在测试新的治疗方案,利用一种噬菌体与目前用于治疗通常对抗生素有抗性的感染的抗生素相结合。在过去的研究中,
一种新型蛇皮状支架可用于向人体管状器官输送药物麻省理工学院的工程师们设计了一种新型的支架,可用于向胃肠道呼吸道或身体的其他管状器官输送药物。可拉伸的蛇皮状设计内置弹出式针头,允许在具有挑战性的情况下向人类身体内的管状器官输送治