等差数列求和公式(等差数列的求和公式)
等差数列求和公式(等差数列的求和公式)数学大师
01.等差数列求和公式
1.公式法
2.错位相减法
3.求和公式
4.分组法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
5.裂项相消法
适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。
【小结】此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
【注意】余下的项具有如下的特点:
1、余下的项前后的位置前后是对称的。
2、余下的项前后的正负性是相反的。
6.数学归纳法
一般地,证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立;
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。
例:
求证:
1×2×3×4 + 2×3×4×5 + 3×4×5×6 + .…… + n(n+1)(n+2)(n+3) = [n(n+1)(n+2)(n+3)(n+4)]/5
证明:
当n=1时,有:
1×2×3×4 = 24 = 2×3×4×5/5
假设命题在n=k时成立,于是:
1×2x3×4 + 2×3×4×5 + 3×4×5×6 + .…… + k(k+1)(k+2)(k+3) = [k(k+1)(k+2)(k+3)(k+4)]/5
则当n=k+1时有:
1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + (k+1)(k+2)(k+3)(k+4)
= 1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4)
= [k(k+1)(k+2)(k+3)(k+4)]/5 + (k+1)(k+2)(k+3)(k+4)
= (k+1)(k+2)(k+3)(k+4)*(k/5 +1)
= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5
即n=k+1时原等式仍然成立,归纳得证
7.并项求和法
(常采用先试探后求和的方法)
例:1-2+3-4+5-6+……+(2n-1)-2n
方法一:(并项)
求出奇数项和偶数项的和,再相减。
方法二:
(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]
方法三:
构造新的数列,可借用等差数列与等比数列的复合。
an=n(-1)^(n+1)
02.等差数列判定及其性质
等差数列的判定
(1)a(n+1)--a(n)=d (d为常数、n ∈N*)[或a(n)--a(n-1)=d,n ∈N*,n ≥2,d是常数]等价于{a(n)}成等差数列。
(2)2a(n+1)=a(n)+a(n+2) [n∈N*] 等价于{a(n)}成等差数列。
(3)a(n)=kn+b [k、b为常数,n∈N*] 等价于{a(n)}成等差数列。
(4)S(n)=A(n)^2 +B(n) [A、B为常数,A不为0,n ∈N* ]等价于{a(n)}为等差数列。
特殊性质
在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍。
即,a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=···=2*a中
例:数列:1,3,5,7,9,11中a(1)+a(6)=12 ; a(2)+a(5)=12 ; a(3)+a(4)=12 ; 即,在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和。
数列:1,3,5,7,9中a(1)+a(5)=10 ; a(2)+a(4)=10 ; a(3)=5=[a(1)+a(5)]/2=[a(2)+a(4)]/2=10/2=5 ; 即,若项数为奇数,和等于中间项的2倍,另见,等差中项。
数学大师
胭脂茉莉(胭脂茉莉试析女诗人淑文短诗!)胭脂茉莉(胭脂茉莉试析女诗人淑文短诗!)前言端午节是纪念屈原的节日,屈原是楚辞的创立者和代表作家,被誉为楚辞之祖。岁至端午,纪念诗人屈原,成为每逢此时,华夏儿女的一种民族自觉,所以
聊斋胭脂(聊斋志异2之胭脂)聊斋胭脂(聊斋志异2之胭脂)大家都喜欢韩雪和严宽吧,但是他们早在之前就已经有过合作了,这部剧就是我们今天要讲的聊斋志异之胭脂。剧情介绍讲述鄂子川与胭霞与亲妹胭脂相依唯命,联手打理父
胭脂红景天(植物推荐胭脂景天)胭脂红景天(植物推荐胭脂景天)品种介绍胭脂景天Sedumspuriumcv。Coccineum1hr简介Briefintroductionofplants品种名称胭脂景天属性景天属
我很丑可是我很温柔(我很丑,可是价格很温柔)我很丑可是我很温柔(我很丑,可是价格很温柔)半岛全媒体记者张伟目前正值本地最好吃的大红杏采摘旺季,6月20日,记者在城阳区夏庄街道山色峪社区果园内看到,往年这个时节正是采摘杏果的时
大连论坛(大连夏季达沃斯论坛明起举行)大连论坛(大连夏季达沃斯论坛明起举行)夏季达沃斯主会场大连国际会议中心一景新华社图7月1日至3日,2019年世界经济论坛第十三届新领军者年会(夏季达沃斯论坛)将在大连举行。论坛期间
歌乐山森林公园(重庆歌乐山慢城之太寺垭森林公园)歌乐山森林公园(重庆歌乐山慢城之太寺垭森林公园)端午假期去了歌乐山慢城的太寺垭森林公园,走到里面没看到太多森林反而感觉像农家乐形式的,还要花三十元的门票感觉有点亏。天气特别热大部分
小路歌曲(长留心中的小路)小路歌曲(长留心中的小路)年轻的时候,一首苏联歌曲曾深深地打动过我,歌名叫小路。几十年过去了,那歌词我还清楚地记得一条小路曲曲弯弯细又长,一直通往迷雾的远方。我要沿着这条细长的小路
穿透屋顶的highkickpptv(意难平的韩剧穿透屋顶的highkick)穿透屋顶的highkickpptv(意难平的韩剧穿透屋顶的highkick)看的第二遍,舅舅和静音的爱情,第一遍是在去年,看完结局难缓了一个星期,明明是喜剧,编剧为什么要把舅舅写死
梁武帝萧衍(梁武帝是一个什么样的人?)梁武帝萧衍(梁武帝是一个什么样的人?)南北朝的梁武帝萧衍,在历史上是一个颇具矛盾性的人物,可以说是个矛盾结合体。公元502年,早已名存实亡的南齐王朝,被意气风发的梁王萧衍取代,建立
雍正继位(雍正继位之谜全面解析)雍正继位(雍正继位之谜全面解析)雍正皇帝胤稹(16781735),清兵入关后的第三代皇帝。后世围绕其继位暴死等事件传说甚多,多悖谬不实。其为政方略遭人议论处亦多,但他在位十三年,勤
康熙13阿哥(十三爷胤祥的真实一生)康熙13阿哥(十三爷胤祥的真实一生)康熙是一位很有作为的皇帝,也是一位很有成就的父亲,共育有55个子女。同时,他也是一位非常纠结的父亲,两废太子,临终前都没有公开继承人是谁。后来,
高加索犬(世界最大的犬科动物高加索犬)高加索犬(世界最大的犬科动物高加索犬)说起高加索犬,就不得不提一下犬中之王的名号,它们性格彪悍沉稳而凶猛,是世界上体型最大的犬类。而北美灰狼,是世界上分布最广的狼,它们狡猾,凶狠,
幼儿舞蹈教学(如何教好小孩子跳舞?)幼儿舞蹈教学(如何教好小孩子跳舞?)舞蹈网论坛版主茶壶bbs。chinadance。cn很多老师都是第一次教小朋友47岁的身为舞蹈老师的我也教过一开始真的很令人头疼的可是现在我可以
美容加湿器(4种加湿器美容方法)美容加湿器(4种加湿器美容方法)一到寒冷的季节空气就会变得干燥,有很多人会为肌肤问题而烦恼吧,这时,请一定要使用加湿器冬季护肤加湿器有滋润皮肤和头发的美容效果预防感冒和流感等病毒预
湖北省黄石市(湖北省黄石市概述!)湖北省黄石市(湖北省黄石市概述!)黄石市,湖北省地级市,位于湖北省东南部,长江中游南岸,东北临长江,与黄冈市隔江相望,北接鄂州市鄂城区,西靠武汉市江夏区鄂州市梁子湖区,西南与咸宁市
郸城一高2020清华北大名单(郸城一高为何空无一人)郸城一高2020清华北大名单(郸城一高为何空无一人)近年来,各省保送至清华北大复旦南开等重点名校的学生人数引起大家的注意。今年,河南省共有129名学霸被提前保送,在这129名学生中
晚婚婚假几天(现在晚婚婚假是多少天?)晚婚婚假几天(现在晚婚婚假是多少天?)图片来源于网络大家都知道,依据劳动法员工结婚的话会有婚假。在计划生育政策下,我国对于早婚晚婚有着具体的规定,晚婚的员工比早婚的员工享有更长的婚
桂林漓江游(你游过漓江吗?)桂林漓江游(你游过漓江吗?)连雨不知春去,一晴方觉夏深。虽然桂林漓江久负盛名,但不少桂林的本地人却从未到过漓江。其实当你真正坐上游船,一路沿江而下,你会发现,漓江不只是市区内那十几
莫以善小而不为(莫为善小而不为)莫以善小而不为(莫为善小而不为)人生中的一次小善,在温暖了他人的同时,也会照亮了自己的心!莫以善小而不为,莫以恶小而为之,是为我等的大善。睡在台阶上的老人去年夏天的晚上,天已经黑了
勿以善小而不为(勿以恶小而为之)勿以善小而不为(勿以恶小而为之)一个房子如果窗户破了,没有人去修补时间一长,其他的窗户也会莫名其妙地被别人打破一面干净的墙壁出现一些涂鸦,没有被清理,那么很快便会被涂得乱七八糟一个
名山大川(8个国内值得一去的名山大川)名山大川(8个国内值得一去的名山大川)有人说人生至少要有两次冲动一场奋不顾身的爱情和一段说走就走的旅行。也许错过了美好恋爱的年纪,但还可以放下生活的繁忙,下定决心,计划一场说走就走
獭兔最新行情(獭兔价格多少钱一只?)獭兔最新行情(獭兔价格多少钱一只?)獭兔原产法国,因它的毛发柔顺光滑,是典型的皮用型兔种,还作为宠物或改善其他品种,经济价值显著,在世界各地皆有养殖,那么獭兔价格多少钱一只?附獭兔